
 Using ODS to Generate Excel Files
 Chevell Parker

Introduction
This paper will demonstrate techniques on how to effectively generate files that can be
read into Microsoft Excel using the Output Delivery System. Topics of discussion will be
include the following:

1) Techniques for creating files with ODS that can be read by Excel
2) Common problems that you may encounter along with solutions
3) Advanced techniques using XML and the ODS Markup Language to supply

worksheet, workbook, printer, window, data validation, sorting, traffic-lighting and
various other properties with ODS

4) Generating Excel file with SAS/INTRNET
5) Example of downloading an Excel file from and HTML page

Some of the tips provided will work with Excel 97, 2000, and XP, but much of what is
covered especially, the advanced techniques using XML will apply to Excel 2000 and
greater. Many of the techniques used are the CSS style properties. As you will see,
creating files with the Output Delivery System that can be read with Excel is very easy,
however, some additional work may be needed to customize the output as you like.

Generating Excel files
There are several methods of generating Excel or spreadsheet files using the Output
Delivery System. The first method that we will discuss is using the HTML destination to
create the Excel or spreadsheet files. When you specify a procedure or data step within
the ODS HTML statement with the .XLS or .CSV extensions, Microsoft Excel is opened
in the Results Viewer. Excel is not an ODS destination and the fact that the file is opened
in Excel is partially a product of ODS. The Results Viewer attempts to open the file
based on the files registered extensions. By default the registered extensions of .XLS and
.CSV belong to Excel on the PC.

Syntax for creating Excel files with the HTML destination
ODS HMTL FILE=”C:\TEMP.XLS”;

PROC PRINT DATA=SASHELP.CLASS;
RUN;

ODS HTML CLOSE;

The new ODS CSV destination can also be used to create files that can be opened in
Microsoft Excel. The acronym CSV stands for Comma Separated Value. This new
destination is experimental with Version 8.2 as part of the ODS Markup Language. The
New CSV destination has a tagset which allows the defaults of the destination to be
modified as we will see shortly. Excel has the ability to ready CSV files, so specifying
the ODS CSV destination with the extension .CSV will create a comma separated file
that can be opened in Excel. Also, the delimiter can be changed from a comma to any
other delimiter by modifying the CSV tagset. The CSV destination is experimental in
Version 8.2 and production for Version 9. Use the CSVALL destination to maintain the
titles and footnotes.

Syntax for creating CSV files with ODS
ODS CSV FILE=”C:\TEMP.CSV”;

PROC PRINT DATA=SASHELP.CLASS;
RUN;

ODS CSV CLOSE;

ODS HTML vs. ODS CSV
The benefit of using the ODS HTML destination with the .XLS or .CSV extensions is
that the formatting is preserved in the Excel file. If you do not use PROC Template to
generate a style, the default style is used and carried forward to the Excel file. The
drawback to using the ODS HTML destination is that the files tend to be quite large by
default which makes the file take longer to load. This is because ODS HTML still uses
the 3.2 tagset which allows the formatting and the data to reside in the same file. For
example, each cell has a tag with all of its attributes along with alignment
properties and the like. The HTML 4.0 specification is that the formatting and the data
should be separated. The HTML tagsets generated with the ODS Markup Language
follows this guideline which is covered in the next section.

Using the ODS CSV destination will generate the traditional spreadsheet file without any
formatting. The benefit of using the CSV destination is that because is does not have any
formatting, the file size of the CSV file is quite small. The CSV destination does not
generate titles and footnotes in the output. The CSVALL destination includes both the
titles and footnotes.

Reducing file size
There are a few techniques that can be employed to reduce the size of Excel files and
reduce the time it takes for the file to load.

The first thing that we can be done is to create a CSS style sheet with the ODS HTML
destination. This allows you to separate the formatting from the data. This reduces the
need for each record to have formatting instruction. If you specify the STYLESHEET=
option with a file, an external CSS file is generated. If the STYLESHEET option is

specified without a file, then the formatting instructions are added to the beginning of the
file as an embedded CSS file.

The HTML tagsets can be used to reduce the size of the .XLS files in 8.2 and beyond.
With the ODS Markup Language, there are 4 to 5 HTML tagsets that can be used to do
this by using the HTML 4.0 standard. The below markup example uses the PHTML
tagset to generate the HTML files. This tagset reduces the HTML file the largest while
maintaining the formatting. If formatting is not an issue, then you might want to try the
CHTML tagset which reduces the file even further, but it does not allow formatting.

The final method for reducing the size of the Excel file is to use the Minimal style. The
Minimal style is one of the default styles shipped with SAS. The Minimal style has very
few formatting instructions which reduces the size of the file.

ODS HTML Syntax ODS MARKUP Syntax
ODS HTML FILE=’TEMP.XLS’ STYLESHEET ; ODS PHTML FILE=’TEMP.XLS’ STYLESHEET=”TEMP.CSS”;

PROC PRINT DATA=SASHELP.CLASS; PROC PRINT DATA=SASHELP.CLASS;
RUN; RUN;

ODS HTML CLOSE; ODS PHTML CLOSE;

General Appearance

Titles and Footnotes

Using ODS HTML to create the .XLS or .CSV files will place the entire title or footnote
in the first cell. The effect of this is that the first column will become the width of the
title or footnote. This occurs because ODS uses the non-standard <Table> tags to house
the titles and footnotes which Excel does not expect for a header. This happens for the
Bylines as well.

To change this behavior, one of the HTML tagsets can be used. The HTML tagsets all
use the header tags <h1> for titles, footnotes and bylines. This is the tag that Excel
expects for its headers.

ODS HTML Syntax
ODS HTML FILE=’C:\TEMP.HTML’;

PROC PRINT DATA=SASHELP.CLASS;
RUN;

ODS HTML CLOSE;

ODS MARKUP Syntax
ODS HTMLCSS FILE=’C:\TEMP.HTML’ STYLESHEET=”TEMP.CSS”;

PROC PRINT DATA=SASHELP.CLASS;
RUN;

ODS HTMLCSS CLOSE;

 Excel Output
 Default HTML Output ODS Markup Output

Starting Output in Row 1

HTML

By default when generating .XLS or .CSV files with ODS HTML, the output begins in
row 2. This happens because of the non -breaking space character () in the
anchor tag. There is no way to get rid of this anchor tag in the HTML destination other
than to post process the HTML file. The HTML tagsets of the Markup Language can be
used to start the output in row 1. The HTML tagsets of the ODS Markup Language do not
have this non-breaking space character in the anchor tag. See the prior example for
syntax.

CSV

The CSV destination generates output beginning in row 3 of the Excel file. This is just
the default of the ODS CSV destination. The defaults of the destination can be changed
by modifying the CSV tagset and overriding the defaults.. The sample code below
modifies the CSV tagset and starts the data in row 1 removing the empty rows.

Tagset syntax to delete empty rows from the CSV destination
 proc template;

 define tagset tagsets.newcsv;
 parent = tagsets.csv;
 notes "This is the CSV definition";

/* we removed the start: put NL. It was putting a line
 * at the beginning of the table.
 */
 define event table;
 finish:
 put NL;
 end;

/* We added finish: */
/* This makes it so that the line is put at the finish

 * of the even row instead of every event row.

 */
define event row;

 finish:
 put NL;
 end;
 end;
run;

ods tagsets.newcsv body='c:\test.csv' ;
proc print data=sashelp.afmsg label; run;
ods tagsets.newcsv close;

Page Setup
Page setup options can be set with a combination of CSS style properties and with XML.
In the page set up, we have the ability to modify almost every piece of the page set up
such as the margins of the page, the margins of the header and footer, the page
orientation, the DPI (data per inch) of the output, the paper size, and pretty much
anything else that you want to set.

Setting Margins, Page Orientation, and Page Size
Margins can be set for the page which include the top, bottom, left and right margins for
the page, the margins for the headers and footers, the justification of the page vertically
and horizontally, the paper size, and the page orientation all can be set using the CSS
@Page rule.

The margins for the page can be set using the CSS style property Margin. The margins
for the headers and footers can be specified using the Microsoft Office specific mso-
header-margin and mso-footer-margin. The alignment of the table horizontally and
vertically on the page can be set using the mso-horizontal-page-align, and the mso-
vertical-page-align CSS style properties. The page orientation can be set within the
@Page rule by using the style property mso-page-orientation with the possible values of
portrait or landscape. The paper size can be modified with the size CSS style property.

Syntax for setting those items included in the page setup
ods html file='temp.xls' headtext=
'<style> @page {size:8.5;
 margin:1.0in .75in 1.0in .75in;

 mso-header-margin:.5in;
 mso-footer-margin:.5in;
 mso-page-orientation:landscape;
 mso-horizontal-page-align:center;
 mso-vertical-page-align:center;}

</style>';

proc print data=sashelp.class;
run;

ods html close;

 Setting Headers and Footers
Headers and footers can also be defined within the @Page rule using the CSS
style properties mso-header-data and mso-footer-data. This allows you to
specify customized headers for the printed output. The headers and footers can
be a generic page number, to the more sophisticated page X of Y, date time, a
signature, to very customized headers and footers with text on the left, right top
and bottom that include a variety of the fore-mentioned. The below example uses
the Page X of Y header at the top of the page and some customized text at the
left, center and right at the bottom of the page.

Syntax for adding headers and footers

ods html file='temp.xls' headtext=
'<style>
 @Page
 {mso-header-data:”Page &P of &N”}
 { mso-footer-data:"&Lthis is the left&CPage &P&RThis is the
 right&A&D&T&N&P";
</style>';

proc print data=sashelp.class;
run;

ods html close;

Cell Formatting

If you ever attempted to import a HTML file with Excel, then you are aware of the
problems that are associated with doing this. One of the largest problems is with cell
formatting. The problems that are encountered are no different than when using ODS
HTML to generate a .CSV or .XLS file. The problem occurs because Excel uses a general
format to import cell values. The general format reads the cell values as they are typed,
however, there are some common problems that you should be aware of.

Common Problems

� Both numeric and character variables will lose leading zeroes
 when creating .XLS or .CSV files with the ODS Destination. You
 will not realize the problem until the leading zeroes are omitted from
 an account number, an Id, or a zip code.

� Trailing zeroes in the decimal values are lost also when the cell
 values are imported into Excel.

� The height and width specified for cell values within SAS are
 ignored when a .XLS or .CSV file is created with ODS.

� Output forced to a new line using the
 tag is read as a separate
 observation

Excel Dates

� Dates are stored in Excel as serial numbers from Jan 1, 1900, or if the
 option is set Jan 1, 1904. To change to the 1904 date system, click
 Options on the Tools menu, click the Calculation tab, and then select the
 1904 date system check box. This can also be changed within SAS
 using XML which will be shown later

� Consideration has to be given when importing non formatted dates

� Excel handles formatted dates correctly using the general format

The following table shows the first date and the last date for each date
system and the serial value associated with each date.

Date
system
First date
Last date
1900 January 1, 1900
(serial value 1) December 31, 9999
(serial value 2958465)
1904 January 2, 1904
(serial value 1) December 31, 9999
(serial value 2957003)

Formatting Solutions

There are various ways of getting around some of the cell formatting issues which we
will discuss in the section below. Most of the solutions will use the Microsoft Office
specific CSS style sheet properties to format the cell values.

Importing values as Text

Importing the file as text using the Text format for the cell values allow the cell values to
come over without any interpretation and does not strip the leading or trailing zeroes.
Using the mso-number-format:\@ CSS style property allows the cell value to be
imported using the Text format for Excel 2000 and above. For Excel 97, the CSS style
property is vnd.ms-excel.numberformat. We can specify any of the many format
understood by Excel, or just format the cells as text.

Common Cell Formats

{mso-number-format:0;} NO Decimals
{mso-number-format:"0\.000";} 3 Decimals
{mso-number-format:"\#\,\#\#0\.000";} Thousand comma with 3 decimals
mmddyy {mso-number-format:"mm\/dd\/yy";} Date7
{mso-number-format:"mmmm\\ d\\\,\\ yyyy";} Date9
mso-number-format:"m\/d\/yy\\ h\:mm\\ AM\/PM";} Date-time AMPM
mso-number-format:"Medium Date";} 01-mar-98
mso-number-format:"d\\-mmm\\-yyyy";} 01-mar-1998
mso-number-format:"Short Time";} 5:16
mso-number-format:"Medium Time";} 5:16 am
mso-number-format:"Long Time";} 5:16:21:00
mso-number-format:Percent;} Percent
mso-number-format:0%;} No percent
mso-number-format:"0\.E+00";} Fractions
mso-number-format:"\@";} Text
mso-number-format:"\[<=9999999\]\#\#\#\\-\#\#\#\#\;\\\(\#\#\#\\\)\\ \#\#\#\\-\#\#\#\#";}
 Phone number

Applying Cell Formats
 Excel 2000 Solution
Text Format applied to all columns Text Format applied to the age field
ODS HTML FILE=‘TEMP.HTML’ HEADTEXT= ODS HTML FILE=”TEMP.HTML HEADTEXT=
“<STYLE> TD {MSO-NUMBER-FORMAT:\@}</STYLE>”; ‘<Style> .Zero { mso-number-format:\@;}</Style>’;

PROC PRINT DATA=SASHELP.CLASS; PROC PRINT DATA=SASHELP.CLASS;
RUN; VAR AGE / style={HTMLCLASS=”Zero”};
 RUN;

ODS HTML CLOSE; ODS HTML CLOSE;

Excel 97 solution
DATA ONE;
 X='0001';
RUN;

ODS HTML FILE='TEMP.XLS';

PROC PRINT DATA=ONE;
VAR X / STYLE={HTMLSTYLE="VND.MS-EXCEL.NUMBERFORMAT:@"};
RUN;

ODS HTML CLOSE;

Applying Cell Formats in the CSV destination
To prevent losing the leading zeroes when using the CSV destination, an “=”
can by added in front of the character string. This allows the fields to be read with the
text format. This workaround also works with the HTML destination. The CSV tagset
can also be modified to add the “=” before the data values.

Syntax to prevent losing the leading zeroes in the CSV destination
/* Syntax to alter data value by pre-pending the “=”. */

data one;
 x='="00001"';
run;

ods csv file='tempx.csv';

 proc print data=one;
 run;

ods csv close;

/* PROC TEMPLATE code that modifies the default CSV tagset by appending the ‘=’ */

proc template;
 define tagset Tagsets.test;
 parent=tagsets.csv;

 define event data;
 put "," / if !cmp(COLSTART , "1");
 put '=' """" / if cmp(TYPE , "string");
 put VALUE;
 put """" / if cmp(TYPE , "string");
 end;

 end;
 run;

 data one;
 x='00001';
 run;

 ods markup file='temp.csv' tagset=tagsets.test;

 proc print data=one;
 run;
 ods markup close;

Specifying the Height and Width

When the height and width are set in SAS, they are ignored by Microsoft Excel. A special
MSO CSS style property has to be set to customize the height or the width of a cell

� The style property mso-height-source:userset and the style property mso-width-
source:userset have to be set before specifying a width or a height

Syntax to specify cell width
ods html file='temp.xls'
headtext='<style> .test {mso-width-source:userset;width:200pt} </style>';

proc print data=sashelp.class;
title;
var age / style(column)={htmlclass="test"};
var sex height weight;
run;

ods html close;

Preventing
 tag from generating separate cells

Excel creates separate cells for values that contain the
 HTML tag. The

HTML tag is responsible for generating a new line. This is often used to split lengthy cell
values in into multiple lines. To change this behavior, the mso-data-placement:same-
cell CSS property and value can be used to prevent Excel from creating a separate cell
when the
 HTML tag is used. Below is an example.

Syntax to prevent the
 tag from creating a new cell
ODS HTML FILE=’TEMP.HTML’
HEADTEXT=”<STYLE> BR {mso-data-placement:same-cell}</STYLE>”;

PROC PRINT DATA=SASHELP.CLASS;
RUN;

ODS HTML CLOSE;

Generating Customized Borders
Generating customized borders can be done within SAS using PROC TEMPLATE or
with procedures that support the STYLE= option. There are times when you might not
want borders around all of the cells, but still some of the cells. This section will show you
how to generate customized borders at the cell level. The first thing that we will do is to
turn off the borders at the table level so we can customize the borders of individual cells.
To do this use the CSS style property Border. The Border style attribute has 3 separate
values: weight, style, and color. The border style property can be used with the style
attribute HTMLSTYLE to control the borders on an individual level.

The border style property will control the overall border with the border-left, border-
right, border-top and border-bottom style properties controlling the various parts of the
border. Below are some examples that show how this is done. For more information on
this, visit the PROC TEMPLATE FAQ.

Creates a double red underline beneath the sub-totals that is 5px in width
ODS HTML FILE='TEMP.XLS' ;

PROC REPORT DATA=SASHELP.CLASS NOWD STYLE(REPORT)={Rules=none } style(column)=
{background=white htmlstyle='border:none'} ;
COL Name Age Sex Height Weight;
Define age / order;

BREAK AFTER AGE / SUMMARIZE STYLE={HTMLSTYLE="border-bottom:5px double red;border-left:none;border-
right:none;BORDER-TOP:5px double red"};
RUN;
ODS HTML CLOSE;

Creates a single green bottom border

ODS HTML FILE='TEMP.XLS' ;

PROC REPORT DATA=SASHELP.CLASS NOWD STYLE(REPORT)={Rules=none } style(column)=
{background=white htmlstyle='border:none'} ;
COL Name Age Sex Height Weight;
Define age / order;

BREAK AFTER AGE / SUMMARIZE STYLE={HTMLSTYLE="border-bottom:5px solid green;border-left:none;border-
right:none;BORDER-TOP:none"};
RUN;
ODS HTML CLOSE;

Modifying Colors, Fonts and Alignments

Style attributes such as colors, fonts and alignments can be modified with PROC
TEMPLATE. For procedures that support the STYLE= option such as PRINT, REPORT,
and TABULATE, the style attributes can be set within the procedure. Excel will honor
most of the style information that the browser will honor. Some exceptions are the
alignment for HTML tables and titles with the HTML destination. HTML tables are left
justified by default within Excel. Titles and footnotes are stored within HTML tables
in 8.2, therefore titles and footnotes are also left by default.

When using the ODS Markup Language, most of the style information such as colors,
fonts and alignments are not generated in the HTML or Excel file by default. The Markup
Language follows the HTML 4.0 standard, which separates the data from the formatting
by using a CSS style sheets for the formatting. Excel 2000 and later recognizes CSS Style
Sheets, while Excel 97 does not. If you want to preserve the formatting while using
Excel 97, then the HTML destination is the best option. When using PROC TEMPLATE

and creating a CSS style sheet with the STYLESHEET= option, modifications made in
the template are translated into the CSS file. Below is PROC TEMPLATE code to
modify the colors and fonts of the .XLS file.

PROC TEMPLATE Syntax to modify various parts of the output
PROC TEMPLATE;
 DEFINE STYLE STYLES.TEST;
 PARENT=STYLES.DEFAULT;
 STYLE Header FROM Header / /* Responsible for column headers */
 FONT_SIZE=6;
 STYLE Data FROM Data / /* Responsible for cell values */
 BACKGROUND=WHITE;
 STYLE SystemTitle FROM SystemTitle / /* Responsible for the titles */
 FOREGROUND=RED;
 STYLE SystemFooter FROM SystemFooter / /* Responsible for the footnotes */
 END;
RUN;

ODS HTML FILE=’TEMP.HTML’ STYLE=STYLES.TEST;
PROC PRINT DATA=SASHELP.CLASS;
RUN;
ODS HTML CLOSE;

Creating Multiple Worksheets within a Workbook

Multiple worksheets can be generated within a workbook with ODS by using XML
to supply the various worksheets which is covered in the next section. This can also
be done with a macro that uses a combination of DDE and ODS HTML. This macro
is documented in the following location. This can also be done strictly using DDE.
http://www.sas.com/service/techsup/unotes/SN/006/006695.html

Using XML to Modify Excel Options
XML can be used to modify options and supply information to Excel from SAS. With the
use of XML and he CSS style properties, we can pretty much modify every part of the
Excel file from SAS. We will just touch on the power on which XML plays in modifying
the .XLS files.

With the use of XML, we can do everything from modify the resolution of the printed
output, selecting the number of copies to the naming the worksheets within the
workbook, to scaling the output, generating backups, splitting windows, modifying the
window size, data validation, sorting, conditional formatting, setting formulas, setting
filters, supplying and removing gridlines, protecting cells, supplying or removing scroll
bars, target screen size and the list continues indefinitely. I hope to show some examples
of the power of XML as a data island when using the HTML destination. For more
information on XML and Excel, please see the references for the web page.

1) The first example uses XML to validate data that is passed to Excel.
For the cell A4, the value has to be a whole number which is specified with the

Type node. If the value is not an integer, the field will be flagged. Also the
maximum value of cell a 4 can be 100 and a minimum value of 1. This is
specified by the Max and Min nodes. If the value does not conform, a error
is generated when the file is imported into Excel. Also when the cell is active,
a title and error message is generated by specifying the InputTitle Node and the
InputMessage nodes.

proc template;
 define tagset tagsets.test;
 parent=tagsets.phtml;
 define event doc;
 start:
 put HTMLDOCTYPE NL NL NL;
 put '<html xmlns:o="urn:schemas-microsoft-com:office:office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-com:office:excel"' NL;
 put 'xmlns="http://www.w3.org/TR/REC-html40">' NL;

 finish:
 put "</html>" NL;
 end;
 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;
 put "<style>" NL "<!--" NL;
 trigger alignstyle;
 put "-->" NL "</style>" NL;
 put " <!--[if gte mso 9]><xml>" NL;
 put "<x:DataValidation>" NL;
 put " <x:Range>A4</x:Range>" NL;
 put " <x:Type>Whole</x:Type>" NL;
 put " <x:Min>1</x:Min>" NL;
 put " <x:Max>1</x:Max>" NL;
 put " <x:InputTitle>test</x:InputTitle>" NL;
 put " <x:InputMessage>testing</x:InputMessage>" NL;
 put "</x:DataValidation>" NL;
 put "</xml><![endif]-->" NL;
 finish:
 put "</head>" NL;
 end;
 end;
run;
options center;
ods markup file="c:\testing.html" tagset=tagsets.test stylesheet='c:\temp.css';

proc print data=sashelp.class;
run;

ods markup close;

2) The below example creates a workbook by the name of temp and a single
 worksheet with the name sheet1. As with the previous example, the Name node is

 specified within the ExcelWorksheets node to name the worksheet. Within the
 WorksheetsOption there is the Zoom node. Within the Zoom node we have
 specified that the output should scale 400% of its actual size. We also specify that
 cell 1 is the active cell.

 proc template;
 define tagset tagsets.test;
 parent=tagsets.phtml;
 define event doc;
 start:
 put HTMLDOCTYPE NL NL NL;
 put '<html xmlns:o="urn:schemas-microsoft-com:office:office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-com:office:excel"' NL;
 put 'xmlns="http://www.w3.org/TR/REC-html40">' NL;

 finish:
 put "</html>" NL;
 end;

 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;
 put "<style>" NL "<!--" NL;
 trigger alignstyle;
 put "-->" NL "</style>" NL;
 finish:

 put " <!--[if gte mso 9]><xml>" NL;
 put " <x:ExcelWorkbook>" NL;
 put " <x:ExcelWorksheets>" NL;
 put " <x:ExcelWorksheet>" NL;
 put " <x:Name>Sheet1</x:Name>" NL;
 put " <x:WorksheetOptions>" NL;
 put " <x:Zoom>400</x:Zoom>" NL;
 put " <x:Selected/>" NL;
 put " <x:Panes>" NL;
 put " <x:Pane>" NL;
 put " <x:Number>3</x:Number>" NL;
 put " <x:ActiveCol>1</x:ActiveCol>" NL;
 put " </x:Pane>" NL;
 put " </x:Panes>" NL;
 put " <x:ProtectContents>False</x:ProtectContents>" NL;
 put " <x:ProtectObjects>False</x:ProtectObjects>" NL;
 put " <x:ProtectScenarios>False</x:ProtectScenarios>" NL;
 put " </x:WorksheetOptions>" NL;
 put " </x:ExcelWorksheet> " NL;
 put " <x:WindowHeight>8070</x:WindowHeight> " NL;
 put " <x:WindowWidth>10380</x:WindowWidth> " NL;
 put " <x:WindowTopX>480</x:WindowTopX> " NL;
 put " <x:WindowTopY>120</x:WindowTopY> " NL;
 put " <x:ProtectStructure>False</x:ProtectStructure> " NL;
 put " <x:ProtectWindows>False</x:ProtectWindows>" NL;
 put " </x:ExcelWorkbook>" NL;
 put " </xml><![endif]--> " NL;
 put "</head>" NL;
 end;
 end;
run;
options center;
ods markup file="c:\temp.xls" tagset=tagsets.test stylesheet='c:\temp.css';
proc print data=sashelp.class;
run;

ods markup close;

3) The below example generates multiple worksheets for a workbook by specifying
XML as a data island. Within the ExcelWorksheet nodes, I have named 3
separate sheet names which are first, second, and third. Within the
WorksheetSource node, I specify the URL for the specific sheet. You can create
these files on the fly, or they can already exist. This creates a workbook with the
name temp and the three worksheet that were mentioned above..

 proc template;
 define tagset tagsets.test;
 parent=tagsets.phtml;

 define event doc;
 start:
 put HTMLDOCTYPE NL NL NL;
 put '<html xmlns:o="urn:schemas-microsoft-com:office:office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-com:office:excel"' NL;
 put 'xmlns="http://www.w3.org/TR/REC-html40">' NL;
 finish:
 put "</html>" NL;
 end;

 define event doc_head;
 start:
 put "<head>" NL;
 put ' <meta name="Excel Workbook Frameset">';
 put '<meta http-equiv=Content-Type content="text/html; charset=windows-1252">';
 put '<meta name=ProgId content=Excel.Sheet>';
 put '<meta name=Generator content="Microsoft Excel 9">';

 finish:

 put "<!--[if gte mso 9]><xml>" NL;
 put "<x:ExcelWorkbook>" NL;
 put " <x:ExcelWorksheets>" NL;
 put " <x:ExcelWorksheet>" NL;
 put " <x:Name>first</x:Name>" NL;
 put " <x:WorksheetSource HRef='c:\temp.html'/>" NL;
 put " </x:ExcelWorksheet>" NL;
 put " <x:ExcelWorksheet>" NL;
 put " <x:Name>second</x:Name>" NL;
 put " <x:WorksheetSource HRef='c:\temp1.html'/>" NL;
 put " </x:ExcelWorksheet>" NL;

 put " <x:ExcelWorksheet> " NL;
 put " <x:Name>third</x:Name>" NL;
 put " <x:WorksheetSource HRef='C:\test.html'/>" NL;
 put " </x:ExcelWorksheet>" NL;
 put " </x:ExcelWorksheets>" NL;
 put " <x:Stylesheet HRef='./stylesheet.css'/>" NL;
 put " <x:WindowHeight>8070</x:WindowHeight>" NL;
 put " <x:WindowWidth>10380</x:WindowWidth>" NL;
 put "<x:WindowTopX>480</x:WindowTopX>" NL;
 put "<x:WindowTopY>45</x:WindowTopY>" NL;
 put "<x:ActiveSheet>3</x:ActiveSheet>" NL;
 put "<x:ProtectStructure>False</x:ProtectStructure>" NL;
 put "<x:ProtectWindows>False</x:ProtectWindows>" NL;
 put "</x:ExcelWorkbook>" NL;
 put "</xml><![endif]-->" NL;
 put "</head>" NL;
 end;
 end;
run;

ods markup file="c:\xx.xls" tagset=tagsets.test stylesheet='c:\temp.css';

proc print data=sashelp.class;
run;

ods markup close;

4) Style information can be applied conditionally using the ConditionalFormatting
node. With the Range Node, the cells are specified that will take a certain action
based on the condition. If the cell A4 is not empty, then cells A1-A21 will not
have a border around its cells.

proc template;
 define tagset tagsets.test;
 parent=tagsets.phtml;
 define event doc;
start:
 put HTMLDOCTYPE NL NL NL;
 put '<html xmlns:o="urn:schemas-microsoft-com:office:office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-com:office:excel"' NL;
 put 'xmlns="http://www.w3.org/TR/REC-html40">' NL;
 finish:
 put "</html>" NL;
 end;

 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;

 put "<style>" NL "<!--" NL;
 trigger alignstyle;
 put "-->" NL "</style>" NL;
 finish:
 put "<!--[if gte mso 9]><xml>" nL;
 put "<x:ConditionalFormatting>" NL;
 put " <x:Range>A4:A21</x:Range>" NL;
 put " <x:Condition>" NL;
 put ' <x:Value1>A4<>""</x:Value1>' NL;
 put " <x:Format Style='border:none;'/>" NL;
 put " <x:Condition>" NL;
 put "</x:ConditionFormatting>" NL;
 put "</xml><![endif]-->" NL;
 put "</head>" NL;
 end;
 end;
run;
options center;
ods markup file="c:\temp.xls" tagset=tagsets.test stylesheet='c:\temp.css';

proc report data=sashelp.class nowd;
col age sex height weight;
define age / order;
define sex / order;
run;

ods markup close;

5) The final example shows a combination of supplying printer options with XML,
worksheet options, and workbook options. The Print node specifies that the
printed output is scaled at 85% of the actual output by specifying this argument
within the Scale node. The horizontal and vertical resolution is specified using the
HorizontalResultion and VerticalResolution nodes with an argument of 300 DPI.
This value might save your printer ribbon wear. We then specify that the widow
should be split using the SplitHorizontal and the SplitVertical nodes and that the
cells should not be protected in the Excel file.

proc template;
 define tagset tagsets.test;
 parent=tagsets.phtml;
define event doc;
start:
 put HTMLDOCTYPE NL NL NL;

 put '<html xmlns:o="urn:schemas-microsoft-com:office:office"' NL;
 put 'xmlns:x="urn:schemas-microsoft-com:office:excel"' NL;
 put 'xmlns="http://www.w3.org/TR/REC-html40">' NL;
 finish:
 put "</html>" NL;
 end;

 define event doc_head;
 start:
 put "<head>" NL;
 put VALUE NL;
 put "<style>" NL "<!--" NL;
 trigger alignstyle;
 put "-->" NL "</style>" NL;

 end;
 end;
run;
options center;
ods markup file="c:\temp.xls" tagset=tagsets.test stylesheet='c:\temp.css';

proc print data=sashelp.class;
run;

ods markup close;

Generating Excel files with SAS/INTRNET

To generate Excel files with SAS/INTRNET, the appropriate content-type has
to be set for the file. This can be done either with the data step or beginning in Version 8.1 using the
APPSRV_HEADER function with the appropriate content-type. Below is an example.

%LET RV=%SYSFUNC(APPSRV_HEADER(CONTENT-TYPE, APPLICATION/VND.MS-EXCEL));
%LET RV=%SYSFUNC(APPSRV_HEADER(CONTENT-DISPOSITION, %STR(ATTACHMENT; FILENAME=TEMP.XLS)));

 ODS HTML BODY=_WEBOUT ;
 PROC PRINT DATA=SASHELP.CLASS;
 RUN;
 ODS HTML CLOSE;

Downloading Excel files from a HTML page

Files can be saved as Excel files from an HTML page by adding a button that
issue the document.ExecCommand function with the saveas argument. This opens
the dialog window with the name of the file as the file to download. To download this
file as an Excel file, just add the extension of .XLS or .CSV and the Excel version
of this HTML file will be saved.

Proc Template Syntax to Save Excel file from a HTML page
proc template;
 define style styles.test;
 parent=styles.default;

 style body from body /
 prehtml='<input onclick="document.execCommand(''saveas'')"

 value="Save As" type="button">';
 end;
run;

ods html file='temp.html' style=styles.test;

proc print data=sashelp.class;
run;

ods html close;

Conclusion
The Output Delivery System is just one of the ways within SAS to create files that can be
read by Excel. What I attempted to do was to show the common problems associated
with creating these files using ODS. There are so many more items that could have been
addressed here, but we had to end somewhere.

References
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnoffxml/html/ofxml2k.asp

Contact Information
You can contact me personally at Chevell.Parker@sas.com. Also visit the
Base R&D web site which is located at : http://www.sas.com/rnd/base/for a host
of other useful ODS and BASE SAS topics which is updated pretty frequently.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnoffxml/html/ofxml2k.asp
mailto:Chevell.Parker@sas.com
http://www.sas.com/rnd/base/

