--- %%NOBANNER%% -->
/*------------------<--- Start of Description -->--------------------\
| Power for one mean; |
|--------------------<--- End of Description -->---------------------|
|--------------------------------------------------------------------|
|--------------<--- Start of Files or Arguments Needed -->-----------|
| Arguments: |
| - Required: |
| n1 = sample size |
| std = standard deviation |
| y1 = true mean under null hypothesis |
| min_y2 = smallest possible alternative hypothesis mean |
| |
| - Optional: |
| max_y2 = largest possible alternative hypothesis mean |
| inc_y2 = increment value for range of y2 |
| alpha = type 1 error, e.g. .01 or .05, default=.05 |
| sides = 1 or 2 for 1 or 2 sided test, default=2 |
| plot = 'P' for line printer plot of power vs y2 |
| 'G' for SAS/GRAPH plot of power vs y2 |
| unit = units for mean, e.g. mg, lbs., cm, etc. |
| Output: Power for null hypothesis mean of y1 vs alternative |
| hypothesis means ranging from min_y2 to max_y2 |
|---------------<--- End of Files or Arguments Needed -->------------|
|--------------------------------------------------------------------|
|----------------<--- Start of Example and Usage -->-----------------|
| Example: %mn1_pr(alpha=.05,sides=2,n1=102,std=1,y1=0, min_y2=0.2); |
| Usage: %mn1_pr(ALPHA=.05,SIDES=2,N1=.,Y1=.,MIN_Y2=., |
| MAX_Y2=.,INC_Y2=.,STD=.,PLOT= , UNIT=); |
| Reference: Bergstralh, EJ. SAS macros for sample size and power |
| calculations. Proceedings of the 9th annual SAS Users |
| Group International Conference. |
| Equation #4. |
\-------------------<--- End of Example and Usage -->---------------*/
%MACRO mn1_pr(ALPHA=.05,SIDES=2,N1=.,Y1=.,MIN_Y2=.,
MAX_Y2=.,INC_Y2=.,STD=.,PLOT= , UNIT=);
/*--------------------------------------------\
| Author: Michael Riggs and Eric Bergstralh;|
| Created: November 16, 1992; |
| Modified: January 9, 1998; |
| Purpose: Power for One means; |
\--------------------------------------------*/
OPTIONS MISSING=' ' NOCENTER;
%LET PLOT=%UPCASE(&PLOT);
DATA T1;
ALPHA=&ALPHA;
SIDES=&SIDES;
Y1=&Y1;
MIN_Y2=&MIN_Y2;
MAX_Y2=&MAX_Y2;
INC_Y2=&INC_Y2;
N1=&N1;
STD=&STD;
ZALPHA=(PROBIT(1-ALPHA))*(SIDES=1) + (PROBIT(1-ALPHA/2))*(SIDES=2);
IF MAX_Y2=. THEN DO;
MAX_Y2=MIN_Y2+1; INC_Y2=MIN_Y2+2; *NEED 1 EXEC OF DO;
END;
TY1=Y1;
TSTD=STD;
TN1=N1;
df=tn1-1;
tn1=int( tn1*(df+1)/(df+3) ); *reduce N for t-test 1/9/98;
DO Y2=MIN_Y2 TO MAX_Y2 BY INC_Y2;
ZBETA=(SQRT(TN1)*ABS(Y2-TY1)-ZALPHA*TSTD)/TSTD;
POWER=PROBNORM(ZBETA);
OUTPUT;
END;
LABEL Y1="Null hyp.*Mean* (&unit)"
Y2="Alt. hyp.*Mean* (&unit)";
SIDES='1 VS. 2*TAILED*TEST';
FOOTNOTE1 ' ';
PROC PRINT SPLIT='*';
ID Y1; var Y2 POWER;
TITLE3
"POWER ESTIMATES FOR COMPARING ONE MEAN TO A CONSTANT";
TITLE4
"Alpha=&alpha, Sides=&sides, STD=&std, N1=&n1, Null hypothesis: mean=&y1";
%IF "&MAX_Y2" NE "" %THEN %DO;
%IF &PLOT= P %THEN %DO;
PROC PLOT NOLEGEND;
PLOT POWER*Y2/ VAXIS=0 TO 1.0 BY .10 ;
LABEL Y2="Alt. hyp. mean(&unit)";
%END;
%ELSE %IF &PLOT= G %THEN %DO;
PROC GPLOT ;
PLOT POWER*Y2;
SYMBOL1 Font= V=none I=j l=1;
LABEL Y2="Alt. hyp. mean(&unit)";
run;
%END;
RUN;
%END;
%MEND MN1_PR;